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Ductile Fracture of Cracked Steel Plates*

by: Wen-Foo Yau

Savannah River Laboratory
E. I. du Pent de Nemours and Company
Aiken, South Ca?olina 29801

ABSTRACT: A simple relationship between loading foP crack

initiation, OP onset of ductile tear, and crack length is

presented for center-cracked plates of mild steel. Formulation

of the nonlinear boundary-value problem is based on incremental

theory of plasticity for Prandtl-Reuss materials. Quasi-static

solutions corresponding to a series of incremental loadin:g

conditions are obtained by the method of finite elements. Tests

conducted on plates of two types of mild steel agree with

numerical results.

I. Introduction

Griffith’s theory of brittle fracture (1,2) first clarified

the distinction between brittle failure and plastic flow. The

fact that most materials are capable of either type of these

failure mechanisms was established (3) by large-scale research

efforts on ship steel in the 1940’s. Orowan (4) suggested

*The information contained in this article was developed during
the course of work under Contract No. AT(07-2)-1 with the U. S.
Energy Research and Development Administration.
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generalization of Griffith’s theory by taking into account the

plastic deformation near the crack tip. Irwin (5) considered

crack surfaces as discontinuities in the displacement field and

made fracture mechanics one of the branches of applied mathematics,

Analytical efforts in the 1960’s produced a large collection of

elegant solutions to mixed boundary-valueproblems involving

cracks, and as a result, quantities related to analyses of

crack tip singularities,such as stress intensity factors (5),

crack opening displacements (6), and J-integrals (7) were pro-

posed as fracture criteria. For expediency of analysis, these

criteria are based on hypothetical materials and geometries, so

the quantities involved require experimental determinations to

account for crack-tip nonlinearity of material behavior.

Feasibility of these criteria depends upon the scale of nonlinear

material behavior and the size of the test specimen.

Concerning ductile fracture, Dugdale (8) reported

results on large scale yielding and presented a simple

his testing

relation

between the extent of yielding and the remotely applied loading,

Goodier and Field (9) constructed a criterion for crack initiation

using ultimate strain at the crack tip as the limiting condition.

Quantitative assessment of the criterion and further experimental

findings

Kanninen

of local

The

the use

were reported by Rosenfield et aZ. (10). Goodier and

(11) developed a mechanical model for the description

nonlinear material behavior.

development of the method of finite elements (12) and

of modern computers greatly reduced difficulties in
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formulation and calculation, so recent research findings in

fracture mechanics frequently involve nonlinear materials with

complex geometries.

This paper presents numerical results as quasi-static

responses of center cracked plates of mild steel, and relates

the loading at crack initiation to the geometry of the cracked

plate. According to incremental theory of plasticity, the

boundary-value problem is formulated in plane-stress for an

elastic-plasticmaterial exhibiting strain-hardeningeffect and is

solved by the finite element method, The condition limiting

the equivalent stress of any one of the elements below the true

ultimate stress of the material in a tensile test is used as

the criterion of failure.

II. Formulation

For a homogeneous and

equilibrium in the absence

are

+ (doij) = O
i

where O.. is the component
lJ

isotropic solid, the equations of

of body forces and inertial effects

(1)

of stress in the direction of coor-

dinate x. and on a plane normal to x.. The equations of com-
1 1

patibility define the components of strain &ij in terms of those of

displacement u. as
1

de..=;

[

& (dui) +%
lJ

(duj)

j i 1 [2)
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To consider the constitutive relations of a Prandtl-Reuss

material (13), the true stress-true strain curve is simplified

by a linearly elastic segment with Young’s modulus, E, and a

plastic segment with a strain hardening rate H. During loading,

the material initially yields at an equivalent or true stress

~ = Y. and fails at ~ = ~ The elastic portions of the strain
Ult”

components, signified by the superscript e, follow the Hookian

relations:

e 1
E. .
lJ

‘~ [(1 + ‘) ‘. - 3voaijl
lJ

(3)

where v is the Poisson ratio, and 6.. = 1 for i = j or 6.. = O
lJ lJ

for i # j; the hydrostatic stress component is a = (011 + 022 +

033)/3. The plastic portions of the strain components, signified

by superscript p, follow the Prandtl-Reuss relations:

(4)

where o: =a..- 06.. are the reduced stress components. These
lj lJ 1]

nonlinear differential equations are valid only during loading,

d; Lo, and for ~ >Yr; i.e., Mises yield criterion for r-th load-

ing cycle is satisfied,

1

()3“ T>y
3=

Yij”ij – r
(5)

where summation is required for repeated subscripts.
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The response of a rectangular plate of width W with a center

crack of length L to loading increments AF applied remotely and

quasi-statically in a direction normal to the crack is formulated

as a mixed boundary-value problem. Figure 1 shows a quarter of

the plate, OABCD, where OC = O.SW, and OD = 0.5L. In Cartesian

coordinates (xl, X2), the following boundary conditions apply for

plane-stress consideration:

Ul(o, X2) = o

012(X1, c) = o,
’22

= (xl, C) =F

~11(0.5hT,x2) = a21(0.5W, x2) = O (6)

012(X1> 0) = 022(X1, o) = o, 0<2x1<L —

U2(X1, o) = o ‘:2xl~1v

III. Method of Solution

The quarter plate is divided into 262 triangular elements

connected by 149 nodal points. For plane-stress calculation, it

is convenient to label the nodal points by even numbers such that

the horizontal and vertical components of force or displacement

are indicated by consecutive odd and even subscripts, respec-

tively. For a small element defined by nodes i, j, and k, the

compatibility relations (2) are approximatedby

[A:] = >[BI [AU] (7)

where a is the area of triangle i j k, the column matrices [As]

and [AU] contain (AE1l, AE22, AE12) and (AUi_l, AUi, AU. AU
j-l’ j’
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‘Uk-l’
AUk), respectively, and

[

x.-x o x - x. (1 xi - x.
Jk kl

o-
1

[B] = o ‘k-1 - ‘j-1 o x. - ‘k-1 o1-1 ‘j-1 - ‘i-1

‘k-1
x.-x- ‘j-1 x. - ‘k-1

- x.
‘k I

x.
Jk

- x. xi - x.
1-1 ]-1 1-1 J

Similarly, the stress components can be approximatedby small

differences of nodal forces, AF

[Au] = #[B][AF] (8)

where h is the plate thickness. The matrix form of the constitu-

tive relations can be written as

[Ao] = [D][At]

where, corresponding to the elastic relations (3)

[

1 v o

[D] = [D]e=&, v 1 0

1
0 0 ;(1 + V)J

or corresponding to the plastic relations (4)

[D] = [D]p =:

—
, t

‘2
2VP - a;lu;.

011 + ’022

2P + ’22 l+V ’12

t !

,1 ‘2
2VP - G Zp + Cll

’22 + ‘Jell~

11°22 l+V 12

I

’11 + ’022 ’22 + “511
Q + 2(1 - V)012

I+v ’12 - I+w G12 - 2(1 +V)

(9)

(lo)

(11)
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2H -2 1 2
where p==o+— 1 + ~ ’12’

Q = R + 2(1 - V2)p,

‘2 t I ‘2
R = ’11 + 2vollo22 + ’22 ‘

and

62 2-0,,022 +02:+301;.
(12)

= ’11

[D]p is valid only if (2011 - U22)Aa11 + (2022 - a11)Aa22

+ 6012Au12
> 0 and 5> Y

r“

When Eqs. (7), (8), and (9) are combined,the nodal forces

external to the element in consideration can be calculated from

given displacements by

[AF] = [g] [AU] (13)

where [g] = ~[B]T[D] [B] and T indicates transpose of the matrix.

Superposition of 262 matrix equations similar to Eq. (13) leads

to

[AF] = [G][AU] (14)

where [AF] and [AU] contain 298 resulting forces and displace-

ments of the 149 nodal points, and [G] is a 298 x 298 square

matrix dependent on [g]. Applying the boundary and equilibrium

conditions, Eqs. (6), (l), and (14) can be solved for 298

unknown quantities in [AF] and [AU]. By Eqs. (7), (8), and (9),

the states of stress and strain for each element are, in turn,

obtained.

For elastic response, Eq. (14) is solved for any given load

F, and the solution is linearly scaled by setting o = Y. for the

element whose equivalent stress is the greatest. Due to
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nonlinearity of [D]p, further loading is applied in terms of

small increments AF. Instead of using the method of controlled

yielding of elements one by one and determining each load

increment prior to solving Eq. (14) as proposed by Yamada,

Yoshimura, and Sakurai (14), the magnitudes of load increments

are assigned arbitrarily, so yielding of more than one element

at a time is allowed for expediency. States of stress obtained

from the previous step are stored, and together with the current

solution in terms of change of the stress states, the correct

constitutive matrix of Eq. (9) can be chosen according to the

yield and loading criteria before finding the solution for the

next load increment. The number of elements that change prop-

erties during each loading step is kept small by choosing a

sufficiently small load increment. Ifieneverone of the elements

reaches the true ultimate stress, the corresponding load is

regarded as that of crack initiation, since there exists no so-

lution for higher loading without modifying the mixed conditions

arising from the newly created traction-freeboundary.

IV. Results

Numerical solutions were obtained for six different ratios

of the width of the plate to the length of the center crack, Ii/L,

for two types of mild steels, A285 Grade B and ASThl516 Gr:~de70,

whose true stress-true strain curves are simplified by line

segments as shown in Fig. 2. All grid patterns for the finite

element calculation are similar; the size of elements changes

-8-



gradually from the tip of the crack to the remote area. A

typical pattern is shown in Fig. 1. Figure 3 gives the quasi-

static solutions of six A285 Grade B steel plates with different

lengths of crack. The curves surrounding

contours of elastic-plastictransition at

applied load labeled in units of stress.

the crack tips indicate

increasing levels of

Similar results for

ASTM 516 Grade 70 steel plates are shown in Fig. 4.

Plotting the maximum applied load corresponding to failure

stress for one of the elements, af, against L/W, the numerical

results are found to fit a simple parabolic relation, as shown

in Fig. 5,

of = Yo(l-L/W);

depending on only one parameter, the initial yield stress, for

material characterization. Validity of this relationship is

supported by tests that we~:e;nadeon three kinds of steels at

room temperature at Savanna;!lliverLaborator:~(SRL). Gensamer

(15) derived a ps.:abolicrel:.~.o~.simi!.ai’tc F.c.(15) based on

energy considerations.
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Fig. 1. Grid pattern for 262 elements and 149 nodes.
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Fig. 3. Elastic-plastic responses of A285 Grade B steel plates.
Numbers indicate applied stresses in units of ksl.
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Fig. 4. Elastic-plastic respcnses of ASTM 516 Grade 70 steel
plates. Numbers indicate applied stresses in units
of ksi.
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Fig. 5. Ductile initiation s-tressvs. crack geometry.
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